Organoselenium-mediated Reduction of α, β -Epoxy Esters to β -Hydroxy Esters

Masaaki MIYASHITA, Masahide HOSHINO, Toshio SUZUKI, and Akira YOSHIKOSHI*

Chemical Research Institute of Non-Aqueous Solutions,

Tohoku University, Sendai 980

 α , β -Epoxy esters were reduced to β -hydroxy esters with an organoselenium reagent, Na⁺[PhSeB(OEt)₃]⁻, via α -substitution process.

β-Hydroxy esters are useful synthetic intermediates and frequently utilized as construction units in important class of natural products. Potential precursors for these compounds may be α , β -epoxy esters (glycidic esters) since a variety of glycidic esters are readily available by the Darzens reaction 1) or epoxidation of α , β -unsaturated esters (acids). Although a number of efficient methods have been developed for the regional reduction of α , β -epoxy ketones to β -hydroxy ketones, 3) only few precedents for the reductive cleavage of α , β -epoxy esters to give β -hydroxy esters are known in literature. Recently SmI₂ has been employed as an effective reagent for this particular transformation.

We have recently reported that an organoselenium reagent, sodium phenylseleno-(triethoxy)borate $\underline{1}$, which is easily prepared by reducing (PhSe) $_2$ with NaBH $_4$ in ethanol 6) (Eq. 1), serves as an efficient reagent for the reduction of α,β -epoxy ketones to β -hydroxy ketones. 3) In this communication we describe the use of this selenium reagent $\underline{1}$ in the reduction of α,β -epoxy esters.

$$(PhSe)_2 + 2 NaBH_4 + 6 EtOH \longrightarrow 2 Na^+[PhSeB(OEt)_3]^- + 7 H_2$$
 (1)

The results are listed in Table 1. As in the reduction of epoxy ketones, 3) brief treatment of diethyl cis- or trans-epoxy succinate with the reagent $\underline{1}$ (3 equiv.) in ethanol produced the desired hydroxy succinate in high yield (entries 1 and 2). Similarly, epoxy ester $\underline{2}$ was reduced at 50 °C to give β -hydroxy ester $\underline{3}$ as the sole product in 91% yield (entry 3). Thus a variety of α -unsubstituted epoxy esters were efficiently and regional reduced to β -hydroxy esters (entries 1-5). On the other hand, substrates bearing an α -alkyl substituent reacted sluggishly to give a mixture of β -hydroxy esters and a β -phenylseleno substitution product (entry 6), and an α -alkyl- β -unsubstituted epoxy ester produced only a β -substitution product (entry 7).

Since the present reduction proceeds via α -substitution process (Eq. 2) in contrast with the reductive cleavage by electron transfer reagents, 5) the intermediate β -hydroxy- α -phenylseleno esters $\underline{\mathbf{5}}$ are also obtainable in high yields by using 1 equiv. of the reagent $\underline{\mathbf{1}}.^{7}$) These compounds as well as β -hydroxy esters will serve as useful synthetic intermediates.

Table 1. Reduction of α , β -Epoxy Esters with Na⁺[PhSeB(OEt)₃] - a)

Entry	Substrate	Temp/°C	Time/min	Product(s)	Yield/%
1	$Eto_2C \xrightarrow{Q} R^2$ $R^1 = Co_2Et, R^2 = H$	0	10	EtO ₂ C OH CO ₂ Et	86
2	$R = CO_2Et$, $R = H$ $R^1 = H$, $R^2 = CO_2Et$	0	10	EtO2C CO2Et	83
3	\bigcirc	50	20	OH CO ₂ R	91
	<u>2</u> R = Et			<u>3</u> R = Et	
4 ^{b)}	R = Me	50	45	R = Me	80
5	CO ₂ Et	50	45	OH CO ₂ Et	97
6	° CO ₂ Et	50	90	OH CO ₂ Et SePh CO ₂ E OH	St 90
7	CO ₂ Et	20	35	PhSe CO ₂ Et	82

- a) The reaction was carried out by using 3 equiv. of the reagent $\underline{1}$ in EtOH.
- b) The reaction was performed using 3 equiv. of Na⁺[PhSeB(OMe)₃] in MeOH.⁸⁾
- c) A mixture of the stereoisomers (5:3).

References

- 1) M. S. Newman and B. J. Magerlein, Org. React., <u>5</u>, 413 (1949).
- 2) G. B. Payne and P. H. Williams, J. Org. Chem., 24, 54 (1959).
- 3) M. Miyashita, T. Suzuki, and A. Yoshikoshi, Tetrahedron Lett., 28, 4293 (1987) and references cited therein.
- 4) For the reductive cleavage of α , β -epoxy ester, only NaTeH and alkali metal have been reported as reagents: A. Osuka, K. Taka-oka, and H. Suzuki, Chem. Lett., 1984, 271; E. Bartmann, Angew. Chem., Int. Ed. Engl., 25, 653 (1986).
- 5) K. Otsubo, J. Inanaga, and M. Yamaguchi, Tetrahedron Lett., 28, 4437 (1987).
- 6) Very recently the structure of the selenium reagent $\underline{\mathbf{1}}$ has been established by us: Tetrahedron Letters, in press.
- 7) Treatment of $\underline{2}$ with 1 equiv. of the reagent $\underline{1}$ resulted in the exclusive formation of β -hydroxy- α -phenylseleno ester $\underline{5}$ (R = C₃H₇), which was readily transformed into β -hydroxy ester $\underline{3}$ by further treatment with the reagent $\underline{1}$.
- 8) This reagent was prepared in methanol according to Eq. 1.